Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
BMC Genomics ; 25(1): 233, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438840

RESUMO

BACKGROUND: Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited. RESULTS: A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome. CONCLUSIONS: We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.


Assuntos
Perciformes , Animais , Perciformes/genética , Genômica , Regiões Antárticas , Evolução Biológica , Proteínas Anticongelantes
2.
Food Environ Virol ; 15(4): 292-306, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37910379

RESUMO

Norovirus is one of the largest causes of gastroenteritis worldwide, and Hepatitis E virus (HEV) is an emerging pathogen that has become the most dominant cause of acute viral hepatitis in recent years. The presence of norovirus and HEV has been reported within wastewater in many countries previously. Here we used amplicon deep sequencing (metabarcoding) to identify norovirus and HEV strains in wastewater samples from England collected in 2019 and 2020. For HEV, we sequenced a fragment of the RNA-dependent RNA polymerase (RdRp) gene targeting genotype three strains. For norovirus, we sequenced the 5' portion of the major capsid protein gene (VP1) of genogroup II strains. Sequencing of the wastewater samples revealed eight different genotypes of norovirus GII (GII.2, GII.3, GII.4, GII.6, GII.7, GII.9, GII.13 and GII.17). Genotypes GII.3 and GII.4 were the most commonly found. The HEV metabarcoding assay was able to identify HEV genotype 3 strains in some samples with a very low viral concentration determined by RT-qPCR. Analysis showed that most HEV strains found in influent wastewater were typed as G3c and G3e and were likely to have originated from humans or swine. However, the small size of the HEV nested PCR amplicon could cause issues with typing, and so this method is more appropriate for samples with high CTs where methods targeting longer genomic regions are unlikely to be successful. This is the first report of HEV RNA in wastewater in England. This study demonstrates the utility of wastewater sequencing and the need for wider surveillance of norovirus and HEV within host species and environments.


Assuntos
Infecções por Caliciviridae , Vírus da Hepatite E , Sequenciamento por Nanoporos , Norovirus , Humanos , Animais , Suínos , Águas Residuárias , Vírus da Hepatite E/genética , Norovirus/genética , Genótipo , Filogenia , Fezes , Inglaterra , RNA Viral/genética
3.
Microb Genom ; 9(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540224

RESUMO

Bacteria from the family Vibrionaceae have been implicated in mass mortalities of farmed Pacific oysters (Magallana gigas) in multiple countries, leading to substantial impairment of growth in the sector. In Ireland there has been concern that Vibrio have been involved in serious summer outbreaks. There is evidence that Vibrio aestuarianus is increasingly becoming the main pathogen of concern for the Pacific oyster industry in Ireland. While bacteria belonging to the Vibrio splendidus clade are also detected frequently in mortality episodes, their role in the outbreaks of summer mortality is not well understood. To identify and characterize strains involved in these outbreaks, 43 Vibrio isolates were recovered from Pacific oyster summer mass mortality episodes in Ireland from 2008 to 2015 and these were whole-genome sequenced. Among these, 25 were found to be V. aestuarianus (implicated in disease) and 18 were members of the V. splendidus species complex (role in disease undetermined). Two distinct clades of V. aestuarianus - clade A and clade B - were found that had previously been described as circulating within French oyster culture. The high degree of similarity between the Irish and French V. aestuarianus isolates points to translocation of the pathogen between Europe's two major oyster-producing countries, probably via trade in spat and other age classes. V. splendidus isolates were more diverse, but the data reveal a single clone of this species that has spread across oyster farms in Ireland. This underscores that Vibrio could be transmitted readily across oyster farms. The presence of V. aestuarianus clades A and B in not only France but also Ireland adds weight to growing concern that this pathogen is spreading and impacting Pacific oyster production within Europe.


Assuntos
Crassostrea , Vibrio , Animais , Irlanda/epidemiologia , Surtos de Doenças
4.
Epidemics ; 44: 100711, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562182

RESUMO

Infectious disease causes significant mortality in wild and farmed systems, threatening biodiversity, conservation and animal welfare, as well as food security. To mitigate impacts and inform policy, tools such as mathematical models and computer simulations are valuable for predicting the potential spread and impact of disease. This paper describes the development of the Aquaculture Disease Network Model, AquaNet-Mod, and demonstrates its application to evaluating disease epidemics and the efficacy of control, using a Viral Haemorrhagic Septicaemia (VHS) case study. AquaNet-Mod is a data-driven, stochastic, state-transition model. Disease spread can occur via four different mechanisms, i) live fish movement, ii) river based, iii) short distance mechanical and iv) distance independent mechanical. Sites transit between three disease states: susceptible, clinically infected and subclinically infected. Disease spread can be interrupted by the application of disease mitigation measures and controls such as contact tracing, culling, fallowing and surveillance. Results from a VHS case study highlight the potential for VHS to spread to 96% of sites over a 10 year time horizon if no disease controls are applied. Epidemiological impact is significantly reduced when live fish movement restrictions are placed on the most connected sites and further still, when disease controls, representative of current disease control policy in England and Wales, are applied. The importance of specific disease control measures, particularly contact tracing and disease detection rate, are also highlighted. The merit of this model for evaluation of disease spread and the efficacy of controls, in the context of policy, along with potential for further application and development of the model, for example to include economic parameters, is discussed.


Assuntos
Doenças dos Animais , Doenças dos Peixes , Septicemia Hemorrágica Viral , Salmonidae , Animais , País de Gales/epidemiologia , Doenças dos Peixes/epidemiologia , Aquicultura/métodos , Septicemia Hemorrágica Viral/epidemiologia , Inglaterra/epidemiologia , Simulação por Computador
5.
Toxins (Basel) ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37368673

RESUMO

The armoured dinoflagellate Alexandrium can be found throughout many of the world's temperate and tropical marine environments. The genus has been studied extensively since approximately half of its members produce a family of potent neurotoxins, collectively called saxitoxin. These compounds represent a significant threat to animal and environmental health. Moreover, the consumption of bivalve molluscs contaminated with saxitoxin poses a threat to human health. The identification of Alexandrium cells collected from sea water samples using light microscopy can provide early warnings of a toxic event, giving harvesters and competent authorities time to implement measures that safeguard consumers. However, this method cannot reliably resolve Alexandrium to a species level and, therefore, is unable to differentiate between toxic and non-toxic variants. The assay outlined in this study uses a quick recombinase polymerase amplification and nanopore sequencing method to first target and amplify a 500 bp fragment of the ribosomal RNA large subunit and then sequence the amplicon so that individual species from the Alexandrium genus can be resolved. The analytical sensitivity and specificity of the assay was assessed using seawater samples spiked with different Alexandrium species. When using a 0.22 µm membrane to capture and resuspend cells, the assay was consistently able to identify a single cell of A. minutum in 50 mL of seawater. Phylogenetic analysis showed the assay could identify the A. catenella, A. minutum, A. tamutum, A. tamarense, A. pacificum, and A. ostenfeldii species from environmental samples, with just the alignment of the reads being sufficient to provide accurate, real-time species identification. By using sequencing data to qualify when the toxic A. catenella species was present, it was possible to improve the correlation between cell counts and shellfish toxicity from r = 0.386 to r = 0.769 (p ≤ 0.05). Furthermore, a McNemar's paired test performed on qualitative data highlighted no statistical differences between samples confirmed positive or negative for toxic species of Alexandrium by both phylogenetic analysis and real time alignment with the presence or absence of toxins in shellfish. The assay was designed to be deployed in the field for the purposes of in situ testing, which required the development of custom tools and state-of-the-art automation. The assay is rapid and resilient to matrix inhibition, making it suitable as a potential alternative detection method or a complementary one, especially when applying regulatory controls.


Assuntos
Dinoflagelados , Sequenciamento por Nanoporos , Animais , Humanos , Dinoflagelados/genética , Saxitoxina/toxicidade , Saxitoxina/genética , Recombinases/genética , Filogenia
6.
PLoS One ; 18(5): e0285257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167256

RESUMO

While both virulent and putatively avirulent Yersinia ruckeri strains exist in aquaculture environments, the relationship between the distribution of virulence-associated factors and de facto pathogenicity in fish remains poorly understood. Pan-genome analysis of 18 complete genomes, representing established virulent and putatively avirulent lineages of Y. ruckeri, revealed the presence of a number of accessory genetic determinants. Further investigation of 68 draft genome assemblies revealed that the distribution of certain putative virulence factors correlated well with virulence and host-specificity. The inverse-autotransporter invasin locus yrIlm was, however, the only gene present in all virulent strains, while absent in lineages regarded as avirulent. Strains known to be associated with significant mortalities in salmonid aquaculture display a combination of serotype O1-LPS and yrIlm, with the well-documented highly virulent lineages, represented by MLVA clonal complexes 1 and 2, displaying duplication of the yrIlm locus. Duplication of the yrIlm locus was further found to have evolved over time in clonal complex 1, where some modern, highly virulent isolates display up to three copies.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Yersiniose , Animais , Yersinia ruckeri/genética , Virulência/genética , Sorogrupo
7.
Clin Transl Radiat Oncol ; 40: 100614, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36949958

RESUMO

Background and purpose: Radical concurrent chemoradiotherapy (CRT) for oesophageal cancer is associated with significant morbidity and is unsuitable for some patients. Olaparib, an inhibitor of the DNA repair enzyme poly-(ADP)-ribose polymerase (PARP) has radiosensitising properties and may be better tolerated than chemotherapy. Materials and methods: We performed a phase 1 study of olaparib with radiotherapy (RT) in oesophageal cancer patients unsuitable for conventional CRT to determine its maximum tolerated dose (MTD) in this setting. Results: Eight patients were recruited. One of 5 patients receiving olaparib 50 mg twice daily and two of 3 receiving 100 mg twice daily experienced dose limiting toxicity (DLT). Conclusions: Olaparib 100 mg twice daily exceeded the MTD in combination with RT in these patients. 50 mg twice daily may be the MTD but this cannot be stated with certainty as the study closed before full recruitment.

8.
Pilot Feasibility Stud ; 9(1): 43, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932430

RESUMO

BACKGROUND: Going to university is an important milestone in many people's lives. It can also be a time of significant challenge and stress. There are growing concerns about mental health amongst student populations including suicide risk. Student mental health and counselling services have the potential to prevent suicide, but evidence-based therapies are required that fit these service contexts. The Broad-Minded Affective Coping intervention (BMAC) is a brief (6 sessions), positive imagery-based intervention that aims to enhance students access to past positive experiences and associated emotions and cognitions. Pilot data provides preliminary support for the BMAC for students struggling with suicidal thoughts and behaviours, but this intervention has not yet been evaluated in the context of a randomised controlled trial (RCT). The Mental Imagery for Suicidality in Students Trial (MISST) is a feasibility RCT that aims to determine the acceptability and feasibility of evaluating the BMAC as an intervention for university students at risk of suicide within a larger efficacy trial. Key feasibility uncertainties have been identified relating to recruitment, retention, and missing data. Intervention acceptability and safety will also be evaluated. METHOD: MISST is a feasibility randomised controlled trial design, with 1:1 allocation to risk assessment and signposting plus BMAC or risk assessment and signposting alone. Participants will be university students who self-report experiences of suicidal ideation or behaviour in the past 3 months. Assessments take place at baseline, 8, 16, and 24 weeks. The target sample size is 66 participants. A subset of up to 20 participants will be invited to take part in semi-structured qualitative interviews to obtain further data concerning the acceptability of the intervention. DISCUSSION: The BMAC intervention may provide an effective, brief talking therapy to help university students struggling with suicidal thoughts that could be readily implemented into university student counselling services. Depending on the results of MISST, the next step would be to undertake a larger-scale efficacy trial. TRIAL REGISTRATION: The trial was preregistered (17 December 2021) on ISRCTN (ISRCTN13621293) and ClinicalTrials.gov (NCT05296538).

9.
Environ Adv ; 9: None, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36466197

RESUMO

The World Health Organization considers antimicrobial resistance as one of the most pressing global issues which poses a fundamental threat to human health, development, and security. Due to demographic and environmental factors, the marine environment of the Gulf Cooperation Council (GCC) region may be particularly susceptible to the threat of antimicrobial resistance. However, there is currently little information on the presence of AMR in the GCC marine environment to inform the design of appropriate targeted surveillance activities. The objective of this study was to develop, implement and conduct a rapid regional baseline monitoring survey of the presence of AMR in the GCC marine environment, through the analysis of seawater collected from high-risk areas across four GCC states: (Bahrain, Oman, Kuwait, and the United Arab Emirates). 560 Escherichia coli strains were analysed as part of this monitoring programme between December 2018 and May 2019. Multi-drug resistance (resistance to three or more structural classes of antimicrobials) was observed in 32.5% of tested isolates. High levels of reduced susceptibility to ampicillin (29.6%), nalidixic acid (27.9%), tetracycline (27.5%), sulfamethoxazole (22.5%) and trimethoprim (22.5%) were observed. Reduced susceptibility to the high priority critically important antimicrobials: azithromycin (9.3%), ceftazidime (12.7%), cefotaxime (12.7%), ciprofloxacin (44.6%), gentamicin (2.7%) and tigecycline (0.5%), was also noted. A subset of 173 isolates was whole genome sequenced, and high carriage rates of qnrS1 (60/173) and bla CTX-M-15 (45/173) were observed, correlating with reduced susceptibility to the fluoroquinolones and third generation cephalosporins, respectively. This study is important because of the resistance patterns observed, the demonstrated utility in applying genomic-based approaches to routine microbiological monitoring, and the overall establishment of a transnational AMR surveillance framework focussed on coastal and marine environments.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36283797

RESUMO

OBJECTIVES: In lung cancer, three prominent symptoms, such as breathlessness, cough and fatigue, are closely related with each other forming a 'respiratory distress symptom cluster'. The aim of this study was to determine the clinical and cost-effectiveness of the respiratory distress symptom intervention (RDSI) for the management of this symptom cluster in people with lung cancer. METHODS: A single blind, pragmatic, randomised controlled trial conducted in eight centres in England, UK. A total of 263 patients with lung cancer were randomised, including 132 who received RDSI and 131 who received standard care. To be eligible, participants self-reported adverse impact in daily life from at least two of the three symptoms, in any combination. Outcomes were change at 12 weeks for each symptom within the cluster, including Dyspnoea-12 (D-12), Manchester Cough in Lung Cancer (MCLC) and Functional Assessment of Chronic Illness-Fatigue. RESULTS: At baseline, nearly 60% of participants reported all three symptoms. At trial completion the total trial attrition was 109 (41.4%). Compared with the control group, the RDSI group demonstrated a statistically significant improvement in D-12 (p=0.007) and MCLC (p<0.001). The minimal clinically important difference MCID) was achieved for each outcome: D-12 -4.13 (MCID >3), MCLC -5.49 (MCID >3) and FACIT-F 4.91 (MCID >4). CONCLUSION: RDSI is a clinically effective, low-risk intervention to support the management of the respiratory distress symptom cluster in lung cancer. However, the study did experience high attrition, which needs to be taken onto consideration when interpreting these results. TRIAL REGISTRATION NUMBER: NCT03223805.

11.
J Invertebr Pathol ; 192: 107786, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700790

RESUMO

Diseases of bivalve molluscs caused by paramyxid parasites of the genus Marteilia have been linked to mass mortalities and the collapse of commercially important shellfish populations. Until recently, no Marteilia spp. have been detected in common cockle (Cerastoderma edule) populations in the British Isles. Molecular screening of cockles from ten sites on the Welsh coast indicates that a Marteilia parasite is widespread in Welsh C. edule populations, including major fisheries. Phylogenetic analysis of ribosomal DNA (rDNA) gene sequences from this parasite indicates that it is a closely related but different species to Marteilia cochillia, a parasite linked to mass mortality of C. edule fisheries in Spain, and that both are related to Marteilia octospora, for which we provide new rDNA sequence data. Preliminary light and transmission electron microscope (TEM) observations support this conclusion, indicating that the parasite from Wales is located primarily within areas of inflammation in the gills and the connective tissue of the digestive gland, whereas M. cochillia is found mainly within the epithelium of the digestive gland. The impact of infection by the new species, here described as Marteilia cocosarum n. sp., upon Welsh fisheries is currently unknown.


Assuntos
Bivalves , Cardiidae , Parasitos , Animais , Bivalves/parasitologia , Cardiidae/parasitologia , DNA Ribossômico , Pesqueiros , Filogenia , País de Gales
12.
Mar Pollut Bull ; 176: 113443, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35217420

RESUMO

The Severn Estuary is a large macrotidal estuary which includes an extensive mudflat with microphytobenthos (MPB) playing a key role in the ecosystem. This study evaluated the impact of chlorination at two different dosing levels (0.05 and 0.5 mg/l as total residual oxidants, TRO, representative of potential concentrations in the mixing zone and within the cooling water systems of a power station) on a MPB community representative of the Severn Estuary. Biomass and diversity were not negatively impacted while physiology was partially affected at the beginning of the experiment, and it recovered towards the end of the experiment. Further investigations for diversity are needed to consolidate our findings. In conclusion our results show that MPB is resilient to chlorination up to a concentration of 0.5 mg/l which is much higher (>10 times) than what might be expected near the chlorinated discharges for most coastal power stations.


Assuntos
Ecossistema , Estuários , Biomassa , Halogenação , Reino Unido
13.
Mol Ecol Resour ; 22(2): 664-678, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34549891

RESUMO

Eukaryote symbionts of animals are major drivers of ecosystems not only because of their diversity and host interactions from variable pathogenicity but also through different key roles such as commensalism and to different types of interdependence. However, molecular investigations of metazoan eukaryomes require minimising coamplification of homologous host genes. In this study we (1) identified a previously published "antimetazoan" reverse primer to theoretically enable amplification of a wider range of microeukaryotic symbionts, including more evolutionarily divergent sequence types, (2) evaluated in silico several antimetazoan primer combinations, and (3) optimised the application of the best performing primer pair for high throughput sequencing (HTS) by comparing one-step and two-step PCR amplification approaches, testing different annealing temperatures and evaluating the taxonomic profiles produced by HTS and data analysis. The primer combination 574*F - UNonMet_DB tested in silico showed the largest diversity of nonmetazoan sequence types in the SILVA database and was also the shortest available primer combination for broadly-targeting antimetazoan amplification across the 18S rRNA gene V4 region. We demonstrate that the one-step PCR approach used for library preparation produces significantly lower proportions of metazoan reads, and a more comprehensive coverage of host-associated microeukaryote reads than the two-step approach. Using higher PCR annealing temperatures further increased the proportion of nonmetazoan reads in all sample types tested. The resulting V4 region amplicons were taxonomically informative even when only the forward read is analysed. This region also revealed a diversity of known and putatively parasitic lineages and a wider diversity of host-associated eukaryotes.


Assuntos
DNA Ambiental , Eucariotos , Animais , Ecossistema , Eucariotos/genética , Células Eucarióticas , RNA Ribossômico 18S/genética
14.
Front Microbiol ; 11: 577481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193196

RESUMO

Intracellular microcolonies of bacteria (IMC), in some cases developing large extracellular cysts (bacterial aggregates), infecting primarily gill and digestive gland, have been historically reported in a wide diversity of economically important mollusk species worldwide, sometimes associated with severe lesions and mass mortality events. As an effort to characterize those organisms, traditionally named as Rickettsia or Chlamydia-like organisms, 1950 specimens comprising 22 mollusk species were collected over 10 countries and after histology examination, a selection of 99 samples involving 20 species were subjected to 16S rRNA gene amplicon sequencing. Phylogenetic analysis showed Endozoicomonadaceae sequences in all the mollusk species analyzed. Geographical differences in the distribution of Operational Taxonomic Units (OTUs) and a particular OTU associated with pathology in king scallop (OTU_2) were observed. The presence of Endozoicomonadaceae sequences in the IMC was visually confirmed by in situ hybridization (ISH) in eight selected samples. Sequencing data also indicated other symbiotic bacteria. Subsequent phylogenetic analysis of those OTUs revealed a novel microbial diversity associated with molluskan IMC infection distributed among different taxa, including the phylum Spirochetes, the families Anaplasmataceae and Simkaniaceae, the genera Mycoplasma and Francisella, and sulfur-oxidizing endosymbionts. Sequences like Francisella halioticida/philomiragia and Candidatus Brownia rhizoecola were also obtained, however, in the absence of ISH studies, the association between those organisms and the IMCs were not confirmed. The sequences identified in this study will allow for further molecular characterization of the microbial community associated with IMC infection in marine mollusks and their correlation with severity of the lesions to clarify their role as endosymbionts, commensals or true pathogens.

15.
Front Microbiol ; 11: 1984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983011

RESUMO

The Viral Hemorrhagic Septicemia Virus (VHSV) is an OIE notifiable pathogen widespread in the Northern Hemisphere that encompasses four genotypes and nine subtypes. In Europe, subtype Ia impairs predominantly the rainbow trout industry causing severe rates of mortality, while other VHSV genotypes and subtypes affect a number of marine and freshwater species, both farmed and wild. VHSV has repeatedly proved to be able to jump to rainbow trout from the marine reservoir, causing mortality episodes. The molecular mechanisms regulating VHSV virulence and host tropism are not fully understood, mainly due to the scarce availability of complete genome sequences and information on the virulence phenotype. With the scope of identifying in silico molecular markers for VHSV virulence, we generated an extensive dataset of 55 viral genomes and related mortality data obtained from rainbow trout experimental challenges. Using statistical association analyses that combined genetic and mortality data, we found 38 single amino acid polymorphisms scattered throughout the complete coding regions of the viral genome that were putatively involved in virulence of VHSV in trout. Specific amino acid signatures were recognized as being associated with either low or high virulence phenotypes. The phylogenetic analysis of VHSV coding regions supported the evolution toward greater virulence in rainbow trout within subtype Ia, and identified several other subtypes which may be prone to be virulent for this species. This study sheds light on the molecular basis for VHSV virulence, and provides an extensive list of putative virulence markers for their subsequent validation.

16.
Virol J ; 16(1): 140, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752912

RESUMO

BACKGROUND: Next generation sequencing (NGS) is becoming widely used among diagnostics and research laboratories, and nowadays it is applied to a variety of disciplines, including veterinary virology. The NGS workflow comprises several steps, namely sample processing, library preparation, sequencing and primary/secondary/tertiary bioinformatics (BI) analyses. The latter is constituted by a complex process extremely difficult to standardize, due to the variety of tools and metrics available. Thus, it is of the utmost importance to assess the comparability of results obtained through different methods and in different laboratories. To achieve this goal, we have organized a proficiency test focused on the bioinformatics components for the generation of complete genome sequences of salmonid rhabdoviruses. METHODS: Three partners, that performed virus sequencing using different commercial library preparation kits and NGS platforms, gathered together and shared with each other 75 raw datasets which were analyzed separately by the participants to produce a consensus sequence according to their own bioinformatics pipeline. Results were then compared to highlight discrepancies, and a subset of inconsistencies were investigated more in detail. RESULTS: In total, we observed 526 discrepancies, of which 39.5% were located at genome termini, 14.1% at intergenic regions and 46.4% at coding regions. Among these, 10 SNPs and 99 indels caused changes in the protein products. Overall reproducibility was 99.94%. Based on the analysis of a subset of inconsistencies investigated more in-depth, manual curation appeared the most critical step affecting sequence comparability, suggesting that the harmonization of this phase is crucial to obtain comparable results. The analysis of a calibrator sample allowed assessing BI accuracy, being 99.983%. CONCLUSIONS: We demonstrated the applicability and the usefulness of BI proficiency testing to assure the quality of NGS data, and recommend a wider implementation of such exercises to guarantee sequence data uniformity among different virology laboratories.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Vírus da Necrose Hematopoética Infecciosa/genética , Novirhabdovirus/genética , Análise de Sequência de DNA/normas , Animais , Peixes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Controle de Qualidade , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
17.
Dis Aquat Organ ; 136(2): 133-146, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31621646

RESUMO

Wild-caught ballan wrasse Labrus bergylta are translocated en masse from the British south-west coast to Scotland for use as cleaner fish to tackle Atlantic salmon Salmo salar sea lice infestations; however, very little is known about the background health status of this species. This is the first health assessment of wild ballan wrasse from the British south-west. Wild-caught ballan wrasse (n = 75) from coastal populations off Dorset and Cornwall were subjected to a full health screen for viral, bacterial and parasitic infections and associated pathology. A range of metazoan and protozoan parasites were observed in histological sections, including copepods (sea lice Caligus centrodonti), nematodes, cestodes, digenean metacercariae, Cryptocaryon-like ciliates and an intestinal coccidian (Eimeria sp.) observed in 26.6% of the samples. The mycoplasma Acholeplasma laidlawii was associated with cytopathic effect in cell culture inoculated with tissue homogenates. The opportunistic pathogen Photobacterium damselae damselae was isolated from a single fish with a systemic infection. The isolate was confirmed to possess the virulence factors hlyAch and plpV, previously associated with cell toxicity and pathogenicity to fish. There are no immediate concerns for the continued mass translation of ballan wrasse, however careful monitoring of the population is recommended.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Oceanos e Mares , Escócia
18.
19.
Microb Genom ; 4(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040063

RESUMO

Renibacterium salmoninarum is the causative agent of bacterial kidney disease (BKD), which is a commercially important disease of farmed salmonids. Typing by conventional methods provides limited information on the evolution and spread of this pathogen, as there is a low level of standing variation within the R. salmoninarum population. Here, we apply whole-genome sequencing to 42 R. salmoninarum isolates from Chile, primarily from salmon farms, in order to understand the epidemiology of BKD in this country. The patterns of genomic variation are consistent with multiple introductions to Chile, followed by rapid dissemination over a 30 year period. The estimated dates of introduction broadly coincide with major events in the development of the Chilean aquaculture industry. We find evidence for significant barriers to transmission of BKD in the Chilean salmon production chain that may also be explained by previously undescribed signals of host tropism in R. salmoninarum. Understanding the genomic epidemiology of BKD can inform disease intervention and improve sustainability of the economically important salmon industry. This article contains data hosted by Microreact.


Assuntos
Aquicultura , Micrococcaceae/isolamento & purificação , Salmão/microbiologia , Animais , Chile , Micrococcaceae/classificação , Micrococcaceae/genética , Epidemiologia Molecular , Filogenia , Salmonidae , Sequenciamento Completo do Genoma
20.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884756

RESUMO

A multilocus variable-number tandem-repeat analysis (MLVA) assay was developed for epizootiological study of the internationally significant fish pathogen Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplification of 10 variable-number tandem-repeat (VNTR) loci in two five-plex PCRs, followed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating from various biological sources and collected from four continents over 7 decades, was analyzed. Minimum-spanning-tree cluster analysis of MLVA profiles separated the studied population into nine major clonal complexes and a number of minor clusters and singletons. The major clonal complexes could be associated with host species, geographic origin, and serotype. A single large clonal complex of serotype O1 isolates dominating the yersiniosis situation in international rainbow trout farming suggests anthropogenic spread of this clone, possibly related to transport of fish. Moreover, subclustering within this clonal complex indicates putative transmission routes and multiple biotype shift events. In contrast to the situation in rainbow trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or less geographically isolated clonal complexes. A single complex of serotype O1 exclusive to Norway was found to be responsible for almost all major yersiniosis outbreaks in modern Norwegian salmon farming, and site-specific subclustering further indicates persistent colonization of freshwater farms in Norway. Identification of genetically diverse Y. ruckeri isolates from clinically healthy fish and environmental sources also suggests the widespread existence of less-virulent or avirulent strains.IMPORTANCE This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish-pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable and robust, and it provides clear, unambiguous, and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context.


Assuntos
Doenças dos Peixes/transmissão , Especificidade de Hospedeiro , Repetições Minissatélites , Yersiniose/veterinária , Yersinia ruckeri/genética , Yersinia ruckeri/patogenicidade , Animais , Doenças dos Peixes/microbiologia , Geografia , Noruega , Oncorhynchus mykiss/microbiologia , Reação em Cadeia da Polimerase , Salmo salar/microbiologia , Sorogrupo , Yersiniose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...